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Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del  Ministero della Salute, è richiesta la 
trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

• Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)

• Consulenza ad aziende con interessi commerciali in campo sanitario (Kite/Gilead, Incyte)

• Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (Kite/Gilead, Novartis, BMS/Celgene)

• Partecipazione ad Advisory Board (Kite/Gilead, Incyte)

• Titolarità di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)

• Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)

• Altro: sostegno viaggi (Kite/Gilead, Novartis, AstraZeneca, Neovii, Janssen)
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Why CAR T cells fail in most patients?
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Figure 1.  CD19 antigen density influences CD19 CAR activity. A, Primary diagnostic samples of DLBCL, MCL, follicular lymphoma (FL), and CLL were 
analyzed by flow cytometry for expression of CD19 compared with normal B cells from healthy donors. Shown is CD19 protein expression, relative to 
healthy donor PBMC B cells on a log2 scale. DLBCL: n = 8, FL: n = 27, CLL: n = 13, MCL: n = 35. Statistical differences between groups were analyzed by 
one-way ANOVA nonparametric test with Dunn post-test correction. B, Representative contour plots illustrating expression levels of CD19 and CD20  
in three DLBCL cases as compared with PBMC B cells from healthy donors. C, Flow cytometric analysis of the expression levels of truncated CD19 on  
the surface of a library of NALM6 clones. Number of molecules of CD19 for each clone were semiquantitatively determined by the BD Quantibrite Kit. 
D, NALM6 clones expressing indicated densities of surface CD19 molecules were cocultured at a 1:1 ratio with CD19–4-1BBζ CAR T cells, and tumor cell 
killing was measured in an Incucyte assay. Representative of six experiments with different T-cell donors. Statistical analysis performed with repeated 
measures ANOVA. E, CD19-4-1BBζ CAR T cells were labeled with cell trace violet (CTV) and then cocultured at a 1:2 ratio with NALM6 clones expressing 
either 963 or 45,851 molecules of surface CD19. T-cell proliferation was measured by flow cytometry four days later. Representative of three experi-
ments with different T-cell donors. F, CD19-4-1BBζ CAR T cells were cocultured with NALM6 clones expressing various amounts of CD19 for 24 hours, 
and secreted IL2 was measured by ELISA. Shown is the concentration of cytokine measured as compared with log of the CD19 molecule number for that 
specific clone and curve fitting was done using a four-parameter variable slope dose–response curve. Representative of six experiments with different 
T-cell donors. For all experiments, error bars represent SD. P < 0.05 was considered statistically significant, and P values are denoted with asterisks as 
follows: P > 0.05, not significant, NS; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Spiegel et al., Nat Med 2021

Heterogeneous CD19 antigen density in DLBCL –
Potential impact on outcome after CAR T cells?



Sequential loss of tumor surface antigens following
chimeric antigen receptor T-cell therapies in diffuse
large B-cell lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the predom-
inant subtype of Non-Hodgkin lymphoma (NHL) in ado-
lescents and adults. Originating from a B-cell lineage, the
neoplastic cells typically express pan-B- cell antigens
including CD19, CD20 and CD22.1 DLBCL can be highly
curable, particularly with localized disease.2 Treatment
with multi-agent chemotherapy +/- rituximab yields
event-free survival rates of greater than 85% in all chil-
dren and in adults with early stage disease only.
However, for patients with refractory or relapsed disease,
or adults with high stage disease, outcomes are poor and
response to chemotherapy based salvage attempts are
limited. 

Chimeric antigen receptor (CAR) T-cell therapy using
an anti-CD19 binding domain has been shown to be

effective in adults with lymphoma3 and may represent an
alternative treatment strategy in pediatric lymphoma,
although experience in this younger age group is limited.
Loss of the target antigen, as a mechanism of tumor
escape following immunotherapy,4-7 is an increasingly
recognized phenomena which has limited the efficacy of
immunotherapy in leukemia, however little is known
about antigen loss in lymphoma.3,8,9 We present a case of
a pediatric patient with multiply relapsed advanced stage
DLBCL who developed sequential antigen loss disease
following sequential CAR immunotherapy. This case
provides a proof of concept of antigen loss as a mecha-
nism for relapse following immunotherapy in lym-
phomas, and highlights the need for repeat biopsy and
flow cytometric analysis in guiding sequential
immunotherapeutic interventions. 

Case: A 12-year-old male with no prior medical history
presented with a 3-month history of right thigh pain,
bilateral neck lymphadenopathy, and a lower abdominal
mass. Imaging studies demonstrated multiple conglomer-

haematologica 2018; 103:e215

LETTERS TO THE EDITOR

Figure 1. Histology of patient tumor sample with H&E, CD20, CD19 and CD22 staining at three varying time points. Pre-CAR therapy; Post-CD19 CAR
therapy/Pre-CD22 CAR therapy and Post-CD22 CAR therapy demonstrating sequential loss of antigen expression over time. 
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Figure 1. Association between CD19 levels at pretreatment or relapse and response. (A) Pretreatment CD19 H-score distribution in ZUMA-1 patients (N5 100) ordered
by CD20 H-score: 90% CD191, 93% CD201, and 98% CD191, and/or CD201. CD19 and CD20 positivity was defined as H-score .5. (B) Association between pretreatment
CD19 H-score with engraftment index (CAR T Peak/SPD) and clinical response. (C) Swimmer plot of relapse patients (N 5 20) by CD19 status and peak CAR T-cell level. (D)
Positron emission tomography scans and tumor biopsies from patient 21 at the indicated time points post–axi-cel. Brown staining shows positive signal from the respective
immunohistochemistry marker with 340 original magnification. Arrows show sites of tumor biopsy. (E) CD19 and CD20 H-scores in paired pretreatment-progression biopsies
from relapsed patients (N5 18). CR, complete response; H&E, hematoxylin and eosin; PD, progressive disease; PR, partial response; SD, stable disease; SPD, sum of product
of perpendicular diameters.
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CD19 gene in patients undergoing CD19-directed therapy. Addi-
tionally, several emergent mutations in PPM1D, a driver of clonal
hematopoiesis of indeterminate potential (CHIP), were noted in
relapsing patients.34,35 Further, we observed evidence for posi-
tive selection by CAR19 therapy on mutations in TP53, recently
implicated in post-CAR19 relapse,33 as well as in PAX5, where
mutations were significantly associated with acquired resistance
(Figure S4A).
Similarly, we assessed for clonal selection of SCNAs (see

STAR Methods), doing so at the level of both genes
(Figures 4C and 4D) and cytobands (Figures S4D and S4E). We
identified genomic regions housing several key genes relevant
to immune evasion and B cell identity to be under selective pres-
sure within these SCNAs. Notably, 9p24.1 amplifications
harboring genes encoding immune checkpoint molecules
CD274 (PD-L1) and PDCD1LG2 (PD-L2) were under positive
selection at relapse. Interestingly genomic regions harboring
PAX5were also among the emergent amplified genomic regions
at relapse. While this seems in contrast with our findings

A B

C D

E

Figure 5. Tumor-intrinsic factors influence
outcomes and CAR19 interactions via diverse
mechanisms
(A) Tumor and CAR19 T cells influence tumor

biology, CAR19 expansion and persistence, and the

tumor microenvironment via reciprocal interactions.

Boxes highlight interactions discussed in this article

with references to relevant figures.

(B) Comparison of regulatory T cell levels in pre-

CAR19 r/rLBCL tumors (n = 68) as measured using

CIBERSORTx in IRF8 altered (light green) or wild-

type (dark green) tumors. Boxplots depict median

and IQR.

(C) Dynamic changes in ctDNA (top) and cfCAR19

(bottom) and an emergent CD19 nonsense mutation

in an exemplar patient that relapses following

CAR19 therapy. cfCAR19 re-expands along with the

re-expansion of ctDNA levels and appearance of

CD19 mutation.

(D) Correlation between CD19 membrane expres-

sion levels quantified using immunohistochemistry

(H score) at relapse (x axis) and relapse cfCAR19

levels (y axis). Solid line depicts linear regression

with shading indicating 95% CI.

(E) Genome-wide heatmap reflecting the copy

number profile of three exemplar patients prior to

therapy (top), and at the time of relapse (bottom).

Each column is representative of a cytoband. Am-

plifications in cytoband 9p24.1 at the time of relapse

in all three patients are highlighted.

TME, tumor microenvironment; AF, allele frequency.

*p < 0.05. See also Figure S4.

regarding the potential role of PAX5 muta-
tions, we believe PAX5 may simply be a
‘‘bystander gene’’ in larger, arm-level, am-
plifications of chromosome 9p, which also
includes CD274. While the identification
of the minimally amplified region is desir-
able, this is difficult to accomplish with
the limited allele frequency found in plasma
samples. Conversely, we noted that ampli-

fications of the genomic region housing TCF-4 (18q21.2) were
selected against at relapse.

Tumor-intrinsic factors influence outcomes and CAR19
interactions via diverse mechanisms
To investigate the mechanisms through which tumor genotypes
can influence outcomes, we integrated our genotypic information
with cfCAR19 levels assessed over time, and tumor RNA
sequencing (RNA-seq) and immune deconvolution from both
pre-CAR19 and post-CAR19 samples (Figure 5A). Several emer-
gent mechanisms of immune evasion were evident at the time of
relapse in individual patients, including target antigen loss and
checkpoint gene copy number alterations. EmergentCD19muta-
tions were noted in multiple progressing patients (Figure 4B),
including a patient that initially achieved undetectable ctDNA
levels post-CAR19 but developed an emergent CD19 nonsense
mutation at the time of relapse. The allele frequency of the CD19
mutation mirrored the ctDNAmolecular relapse, and was associ-
ated with re-expansion of CAR19 cells (Figure 5C). When

ll
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Outcomes of first therapy after CD19-CAR-T treatment failure
in large B-cell lymphoma
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Persistence or recurrence of large B-cell lymphoma after CD19-CAR-T is common, yet data guiding management are limited. We describe
outcomes and features following CAR-T treatment failure. Of 305 adults who received CD19-CAR-T, 182 experienced disease recurrence or
progression (1-year cumulative incidence 63% [95%CI: 57–69]). Of 52 post-CAR-T biopsies evaluated by flow cytometry, 49 (94%)
expressed CD19. Subsequent anti-cancer treatment was administered in 135/182 (74%) patients with CAR-T treatment failure. Median OS
from the first post-CAR-T treatment was 8 months (95%CI 5.6–11.0). Polatuzumab-, standard chemotherapy-, and lenalidomide-based
treatments were the most common approaches after CAR-T. No complete responses (CRs) were observed with conventional
chemotherapy, while CR rates exceeding 30% were seen following polatuzumab- or lenalidomide-based therapies. Factors associated
with poor OS among patients treated post-CAR-T were pre-CAR-T bulky disease (HR 2.27 [1.10–4.72]), lack of response to CAR-T (2.33
[1.02–5.29]), age >65 years (HR 2.65 [1.49–4.73]) and elevated LDH at post-CAR-T treatment (HR 2.95 [1.61–5.38]). The presence of ≥2 of
these factors was associated with inferior OS compared to ≤1 (56% vs. 19%). In this largest analysis to date of patients who progressed or
relapsed after CD19-CAR-T, survival is poor, though novel agents such as polatuzumab and lenalidomide may have hold promise.

Leukemia; https://doi.org/10.1038/s41375-022-01739-2

INTRODUCTION
CD19-directed chimeric antigen receptor T-cell (CD19-CAR-T) therapy
has transformed the care of relapsed or refractory (r/r) large B-cell
lymphoma (LBCL). Both FDA-approved and Point-of-Care CD19-CAR-T
cell (POC) products have resulted in unprecedented response rates of
~70% in this population [1–7]. Unfortunately, over 60% of patients
will ultimately progress or relapse following CD19-CAR-T [8–13].
The treatment landscape for r/r LBCL is expanding. Polatuzu-

mab, tafasitamab, selinexor, and loncastuximab are FDA-
approved in this setting [14–17]. Immune checkpoint inhibitors,
lenalidomide, bi-specific antibodies, investigational CAR-T

products, and allogeneic hematopoietic cell transplantation, as
well as salvage chemotherapy, represent additional options.
Nevertheless, it is unclear how they should be utilized after
exposure to CAR-T [18, 19]. Several groups have reported their
experience treating relapses after CAR-T cell therapy, albeit with
limited sample sizes and heterogeneous treatment strategies
[11, 13, 19–22].
In this retrospective observational research study, our aims

were: 1. Report characteristics and outcomes of LBCL patients
whose disease relapsed or progressed after CD19-CAR-T therapy;
2. Characterize response and overall survival of first-line
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tumor and effector profiling (STEP). Specifically, STEP utilizes
non-invasive integrated analysis of cell-free DNA (cfDNA) mole-
cules to profile ctDNA, cfCAR19, and non-engineered T cell re-
ceptor cfDNA (cfTCR) molecules (Figure 2A). To identify tumor-
derived mutant DNA from malignant lymphoma B cells, we
captured 646 kb targeting 186 recurrently mutated protein-cod-
ing genes in lymphomas or involved in immunological check-
points (Table S3). Separately, to profile cfDNA derived from
infused CAR19-transduced T cells and from other effector
T cells associated with immune reconstitution, we simulta-
neously applied a 24-kb panel targeting the axi-cel retroviral vec-
tor sequence (Figure S2A), as well as the full set of human T cell
receptor loci (see STAR Methods).

Baseline and dynamic ctDNA levels are prognostic for
outcome
Using STEP, we quantified ctDNA, cfCAR19, and cfTCR levels
prior to CAR19 infusion and at multiple time points following
cell therapy in the discovery cohort (Figures 2B and S1C). Higher
pre- and post-treatment ctDNA levels have previously been
associated with outcomes in patients receiving CAR19 ther-
apy.24 Similarly, we observed that patients ultimately experi-
encing disease progression had significantly higher pretreat-

ment ctDNA levels (Figure 2B). This adverse prognostic effect
of higher ctDNA tumor burden was observed both prior to lym-
phodepleting chemotherapy (median 200.1 versus 24.1 haploid
genome equivalent [hGE]/mL for progressors versus ongoing
responders, p = 0.005) and on the day of CAR19 T cell infusion
(median 540.4 versus 11.8 hGE/mL, p = 0.004). While median
ctDNA levels decreased within 1 week after infusion in both pro-
gressors and ongoing responders, progressors exhibited higher
ctDNA levels throughout the course of therapy. Specifically,
higher ctDNA levels were associated with progression 1 week
(median 30.4 versus 0.12 hGE/mL, p = 0.003) and at 4 weeks
after CAR19 T cell infusion (median 7.2 hGE/mL versus not
detected, p < 0.001).
Using the discovery cohort, we determined the optimal level of

ctDNA to stratify patients for EFS after axi-cel therapy, at both
the pretreatment and week +4 time points (Figures S1D and
S1E). Interestingly, this exercise resulted in the same pre- and
on-treatmentctDNA thresholdspreviously validated tostratifyout-
comes in patients with treatment-naive diffuse large B cell lym-
phoma (DLBCL) receiving immunochemotherapy.22 On the day
of CAR T cell infusion, we observed that high ctDNA levels were
strongly predictive of shorter EFS (p = 0.002; Figure 2C). Similarly,
at the 4-week landmark, patients that achieved a ctDNA major

Figure 1. Study overview
Schematic illustrating the integrative approach to characterize mechanisms of CAR19 resistance undertaken in this study. A r/rLBCL patient undergoing CAR19

therapy is depicted from prior to infusion to relapse. Above timeline: Plasma samples for simultaneous profiling of ctDNA, cfCAR19, and cfTCR were obtained

from pretreatment and multiple post-infusion time points, including relapse, when applicable. Below timeline: Analyses performed at each time point are indi-

cated in colored boxes. Colors reflect the compartment being analyzed: tumor/ctDNA (purple), CAR19/cfCAR19 (blue), immune microenvironment/

cfTCR (green).
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Figure 4. Genomic determinants of resistance to CAR19 therapy
(A) (Left) Recurrently mutated genes in patients receiving CAR19 therapy, stratified by ongoing response versus progression among pooled patients from the

discovery and validation cohorts. (Right) Effect of mutations in given gene on EFS (HR from proportional hazard model); significant values (p < 0.05) shown in red.

(legend continued on next page)
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negative escape to CAR T cells in a CLL model
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Figure 1 Establishment of CD19- negative in vivo recurrence model to CART-19. (A) Setting up of the recurrence disease 
model in NOD- scid IL2Rgnull mice (NSG). Timing of B and T cells’ injection is depicted in the upper panel. Mice were closely 
followed for disease manifestation (by regular weighing depicted in the middle panel). Around 2 weeks after tumor cell injection, 
mice started to show signs of leukemia and subsequently all control and some CAR- treated mice had to be sacri!ced due 
to severe illness (~day 20). At this point, a clear population of CD19- positive B cells as well as CD3- positive T cells could be 
found in disease- affected organs by "ow cytometry (lower panel, representative sample depicted). Weeks after initial response, 
up to 70% of CART-19- treated surviving mice relapsed with subcutaneous tumors that lost CD19 antigen (lower panel). (B) 
Immunohistochemistry staining for CD19, CD20 (both markers of tumor B cells) and CD3 T- cell marker in one representative 
recurring tumor showed loss of CD19 antigen in tumor cells. B cells from this tumor were sorted into CD19- negative and CD19- 
positive population and seeded in vitro. (C) CD19 expression was gradually regained in in vitro culture over time as shown by 
"ow cytometry. Freshly sorted CD19- negative cells (in gray), CD19- negative cells cultivated for 22 days (in red) and CD19- 
positive cells (in black) were assessed. (D) Freshly sorted CD19- negative cells did not express CD19 mRNA as assessed by 
qRT- PCR. (E) Alternative splicing is likely not driving the antigen- negative escape in assessed samples, as no truncated cDNA 
forms were detected by PCR. Primers used in the assay were described previously9 and encompass the region of CD19 exons 
1–5, exons 4–8 or exons 1–4. Arrows indicate the expected size of full length (FL; green) or truncated cDNA product (red). 
CD19-(D22)=CD19- negative cells cultivated for 22 days; ∆ex2=skipping of exon 2; ∆ex5−6=skipping of exons 5 and 6. CART-
19, anti- CD19 chimeric antigen receptor T cells.
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Figure 2 CD19 promoter DNA methylation can drive tumor escape and it is reversible with 5- aza-2′-deoxycytidine in vitro and 
in vivo. (A) Bisul!te sequencing of a region spanning CD19 promoter including 8 CpG sites in sorted CD19- negative and CD19- 
positive cells from one recurring tumor showed an inverse correlation between DNA methylation and CD19 expression. Results 
representative of two technical replicates are shown. Methylation levels’ color code is maintained throughout the !gure and 
represents percentage of methylation. (B) Freshly sorted CD19- negative cells from one recurring tumor were treated with 5- aza-
2′-deoxycytidine (AZA; 1 µM or 5 µM) or DMSO for 48 hours. Then, CD19 expression levels were assessed by "ow cytometry. 
Results representative of two biological replicates are shown. (C) Bisul!te sequencing of CD19 promoter of samples assessed 
in (B) is shown. (D) NSG mice with established CLL were treated either solely with CART-19 (PBS) or by combination of CART-
19 and 5- aza-2′-deoxycytidine (azacytidine). CLL cells harvested from these mice showed markedly different levels of mean 
"uorescence intensity (MFI) of CD19. **p value 0.0015, ***p value 0.0002. CART-19, anti- CD19 chimeric antigen receptor T cells; 
CLL, chronic lymphocytic leukemia.
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